3.40 \(\int \frac {(d+e x)^2}{x^3 \sqrt {d^2-e^2 x^2}} \, dx\)

Optimal. Leaf size=80 \[ -\frac {2 e \sqrt {d^2-e^2 x^2}}{d x}-\frac {\sqrt {d^2-e^2 x^2}}{2 x^2}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{2 d} \]

[Out]

-3/2*e^2*arctanh((-e^2*x^2+d^2)^(1/2)/d)/d-1/2*(-e^2*x^2+d^2)^(1/2)/x^2-2*e*(-e^2*x^2+d^2)^(1/2)/d/x

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {1807, 807, 266, 63, 208} \[ -\frac {2 e \sqrt {d^2-e^2 x^2}}{d x}-\frac {\sqrt {d^2-e^2 x^2}}{2 x^2}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/(x^3*Sqrt[d^2 - e^2*x^2]),x]

[Out]

-Sqrt[d^2 - e^2*x^2]/(2*x^2) - (2*e*Sqrt[d^2 - e^2*x^2])/(d*x) - (3*e^2*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/(2*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps

\begin {align*} \int \frac {(d+e x)^2}{x^3 \sqrt {d^2-e^2 x^2}} \, dx &=-\frac {\sqrt {d^2-e^2 x^2}}{2 x^2}-\frac {\int \frac {-4 d^3 e-3 d^2 e^2 x}{x^2 \sqrt {d^2-e^2 x^2}} \, dx}{2 d^2}\\ &=-\frac {\sqrt {d^2-e^2 x^2}}{2 x^2}-\frac {2 e \sqrt {d^2-e^2 x^2}}{d x}+\frac {1}{2} \left (3 e^2\right ) \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx\\ &=-\frac {\sqrt {d^2-e^2 x^2}}{2 x^2}-\frac {2 e \sqrt {d^2-e^2 x^2}}{d x}+\frac {1}{4} \left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {d^2-e^2 x^2}}{2 x^2}-\frac {2 e \sqrt {d^2-e^2 x^2}}{d x}-\frac {3}{2} \operatorname {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right )\\ &=-\frac {\sqrt {d^2-e^2 x^2}}{2 x^2}-\frac {2 e \sqrt {d^2-e^2 x^2}}{d x}-\frac {3 e^2 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 122, normalized size = 1.52 \[ \frac {e \left (-\frac {4 d \sqrt {d^2-e^2 x^2}}{x}-2 d e \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )-e \sqrt {d^2-e^2 x^2} \left (\frac {d^2}{e^2 x^2}+\frac {\tanh ^{-1}\left (\sqrt {1-\frac {e^2 x^2}{d^2}}\right )}{\sqrt {1-\frac {e^2 x^2}{d^2}}}\right )\right )}{2 d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/(x^3*Sqrt[d^2 - e^2*x^2]),x]

[Out]

(e*((-4*d*Sqrt[d^2 - e^2*x^2])/x - 2*d*e*ArcTanh[Sqrt[d^2 - e^2*x^2]/d] - e*Sqrt[d^2 - e^2*x^2]*(d^2/(e^2*x^2)
 + ArcTanh[Sqrt[1 - (e^2*x^2)/d^2]]/Sqrt[1 - (e^2*x^2)/d^2])))/(2*d^2)

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 63, normalized size = 0.79 \[ \frac {3 \, e^{2} x^{2} \log \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{x}\right ) - \sqrt {-e^{2} x^{2} + d^{2}} {\left (4 \, e x + d\right )}}{2 \, d x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/x^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="fricas")

[Out]

1/2*(3*e^2*x^2*log(-(d - sqrt(-e^2*x^2 + d^2))/x) - sqrt(-e^2*x^2 + d^2)*(4*e*x + d))/(d*x^2)

________________________________________________________________________________________

giac [B]  time = 0.27, size = 170, normalized size = 2.12 \[ -\frac {3 \, e^{2} \log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-x^{2} e^{2} + d^{2}} e \right |} e^{\left (-2\right )}}{2 \, {\left | x \right |}}\right )}{2 \, d} + \frac {x^{2} {\left (\frac {8 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} e^{4}}{x} + e^{6}\right )}}{8 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{2} d} - \frac {{\left (\frac {8 \, {\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )} d e^{8}}{x} + \frac {{\left (d e + \sqrt {-x^{2} e^{2} + d^{2}} e\right )}^{2} d e^{6}}{x^{2}}\right )} e^{\left (-8\right )}}{8 \, d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/x^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="giac")

[Out]

-3/2*e^2*log(1/2*abs(-2*d*e - 2*sqrt(-x^2*e^2 + d^2)*e)*e^(-2)/abs(x))/d + 1/8*x^2*(8*(d*e + sqrt(-x^2*e^2 + d
^2)*e)*e^4/x + e^6)/((d*e + sqrt(-x^2*e^2 + d^2)*e)^2*d) - 1/8*(8*(d*e + sqrt(-x^2*e^2 + d^2)*e)*d*e^8/x + (d*
e + sqrt(-x^2*e^2 + d^2)*e)^2*d*e^6/x^2)*e^(-8)/d^2

________________________________________________________________________________________

maple [A]  time = 0.01, size = 86, normalized size = 1.08 \[ -\frac {3 e^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{2 \sqrt {d^{2}}}-\frac {2 \sqrt {-e^{2} x^{2}+d^{2}}\, e}{d x}-\frac {\sqrt {-e^{2} x^{2}+d^{2}}}{2 x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/x^3/(-e^2*x^2+d^2)^(1/2),x)

[Out]

-1/2*(-e^2*x^2+d^2)^(1/2)/x^2-3/2*e^2/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)-2*e*(-e^2*x
^2+d^2)^(1/2)/d/x

________________________________________________________________________________________

maxima [A]  time = 0.95, size = 83, normalized size = 1.04 \[ -\frac {3 \, e^{2} \log \left (\frac {2 \, d^{2}}{{\left | x \right |}} + \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} d}{{\left | x \right |}}\right )}{2 \, d} - \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} e}{d x} - \frac {\sqrt {-e^{2} x^{2} + d^{2}}}{2 \, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/x^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="maxima")

[Out]

-3/2*e^2*log(2*d^2/abs(x) + 2*sqrt(-e^2*x^2 + d^2)*d/abs(x))/d - 2*sqrt(-e^2*x^2 + d^2)*e/(d*x) - 1/2*sqrt(-e^
2*x^2 + d^2)/x^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (d+e\,x\right )}^2}{x^3\,\sqrt {d^2-e^2\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^2/(x^3*(d^2 - e^2*x^2)^(1/2)),x)

[Out]

int((d + e*x)^2/(x^3*(d^2 - e^2*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [C]  time = 6.72, size = 214, normalized size = 2.68 \[ d^{2} \left (\begin {cases} - \frac {e \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{2 d^{2} x} - \frac {e^{2} \operatorname {acosh}{\left (\frac {d}{e x} \right )}}{2 d^{3}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\\frac {i}{2 e x^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e}{2 d^{2} x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} + \frac {i e^{2} \operatorname {asin}{\left (\frac {d}{e x} \right )}}{2 d^{3}} & \text {otherwise} \end {cases}\right ) + 2 d e \left (\begin {cases} - \frac {e \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{d^{2}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\- \frac {i e \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}}{d^{2}} & \text {otherwise} \end {cases}\right ) + e^{2} \left (\begin {cases} - \frac {\operatorname {acosh}{\left (\frac {d}{e x} \right )}}{d} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\\frac {i \operatorname {asin}{\left (\frac {d}{e x} \right )}}{d} & \text {otherwise} \end {cases}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/x**3/(-e**2*x**2+d**2)**(1/2),x)

[Out]

d**2*Piecewise((-e*sqrt(d**2/(e**2*x**2) - 1)/(2*d**2*x) - e**2*acosh(d/(e*x))/(2*d**3), Abs(d**2/(e**2*x**2))
 > 1), (I/(2*e*x**3*sqrt(-d**2/(e**2*x**2) + 1)) - I*e/(2*d**2*x*sqrt(-d**2/(e**2*x**2) + 1)) + I*e**2*asin(d/
(e*x))/(2*d**3), True)) + 2*d*e*Piecewise((-e*sqrt(d**2/(e**2*x**2) - 1)/d**2, Abs(d**2/(e**2*x**2)) > 1), (-I
*e*sqrt(-d**2/(e**2*x**2) + 1)/d**2, True)) + e**2*Piecewise((-acosh(d/(e*x))/d, Abs(d**2/(e**2*x**2)) > 1), (
I*asin(d/(e*x))/d, True))

________________________________________________________________________________________